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Observability of discretized wave equations

Vilmos Komornik and Paola Loreti

abstract: We establish several boundary observability results for finite-dimen-
sional approximations of systems of strings and beams via space discretization. Our
results allow us to recover the optimal observability theorems concerning the con-
tinuous case by a limit process.
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1. Introduction

Many research papers were devoted to the observability of distributed systems
with continuous observability; see, e.g., [5], [7], [10], [11], [17] and their refer-
ences. From a practical point of view it can be convenient to apply discrete time
observation. Results in this direction were proven in [15]. Using another approach,
developed in collaboration with C. Baiocchi [2], explicit and precise estimates were
obtained in [8], which also contain time-discrete observability estimates for vector-
valued functions and for functions of several variables.

A crucial assumption of the above theorems was a gap condition on the spectrum
of the underlying operator. In order to solve various natural control problems, such
as simultaneous observability and controllability of string or beam systems, this
gap condition has been weakened in a work in collaboration with C. Baiocchi [2];
a discrete version of this result has been obtained recently in [9].

In this paper we give a further generalization of these results by also allowing
space dicretization. If only the spatial variable is discretized, then letting the
mesh size tend to zero we recover the usual continuous observation results for any
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T > T0 where T0 denotes the critical observability time. If both the spatial and
time variables are discretized, then letting the two mesh sizes tend to zero we
recover the usual continuous observation results for any T > T0 again.

Our approach is first presented in Section 2 on the example of one (possibly
loaded) string. In Sections 3 and 4 our method is extended and adapted to finite
systems of strings or beams.

2. Observability of a spatially discretized wave equation

Consider a vibrating string of length ` with fixed endpoints and with initial
data u0 and u1:





utt − uxx + au = 0 in R× (0, `),
u(t, 0) = u(t, `) = 0 for t ∈ R,
u(0, x) = u0(x), ut(0, x) = u1(x) for x ∈ (0, `).

(2.1)

Here a is a given real number.
We recall that for any given u0 ∈ H1

0 (0, `) and u1 ∈ L2(0, `) there exists a
unique weak solution satisfying

u ∈ C(R; H1
0 (0, `)) ∩ C1(R; L2(0, `)) ∩ C2(R; H−1(0, `))

and
ux(·, 0), ux(·, `) ∈ L2

loc(R).

The solution is given by the series

u(t, x) =
∞∑

k=1

(
bkeiωkt + b−ke−iωkt

)
sin(µkx)

where
µk =

kπ

`
, ωk =

√
µ2

k + a

and the complex coefficients b±k depend on the initial data.
Furthermore, if I is a bounded interval of length |I| > 2`, then we have the

estimate ∫

I

|ux(t, 0)|2 dt ³ ‖u0‖2H1
0 (0,`) + ‖u1‖2L2(0,`) (2.2)

where the notation A ³ B means that αA ≤ B ≤ βA with suitable positive
constants α, β, independent of the initial data.

Discretizing the system (2.1) according to the space variable we get for every
positive integer N the following:





(uN
tt −∆huN + au)(t, kh) = 0 t ∈ R, k = 1, . . . , N − 1,

uN (t, 0) = uN (t, `) = 0 for t ∈ R,
uN (0, kh) = u0(kh), k = 1, . . . , N − 1,

uN
t (0, kh) = u1(kh) k = 1, . . . , N − 1.
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Here we use the notation h = `/N and the approximation

∆hv(x) =
v(x + h)− 2v(x) + v(x− h)

h2
.

This problem also has a unique solution, given by the finite sum

uN (t, x) =
N−1∑

k=1

(
bN,keiωN,kt + bN,−ke−iωN,kt

)
sin(µkx)

with

µk =
kπ

`
, ωN,k =

√(
sin(µkh/2)

h/2

)2

+ a

and suitable complex coefficients bN,±k.
It follows from the finite-dimensional character of the latter system that

∫

I

∣∣∣u
N (t, h)

h

∣∣∣
2

dt ³ ‖u0‖2H1
0 (0,`) + ‖u1‖2L2(0,`) (2.3)

for every nondegenerated bounded interval.
A natural question is whether we may deduce (2.2) from (2.3) by letting h → 0.

If I is small, then the constants in the estimates blow up as h → 0. The situation
changes if I is suficiently long:

Proposition 2.1 Fix two positive integers 1 < N ′ < N and choose

|I| > 2π

ωN,N ′ − ωN,N ′−1
. (2.4)

There exist two positive constants αN,N ′ and βN,N ′ such that

αN,N ′
(
‖u0‖2H1

0 (0,`) + ‖u1‖2L2(0,`)

)
≤

∫

I

∣∣∣u
N (t, h)

h

∣∣∣
2

dt

≤ βN,N ′
(
‖u0‖2H1

0 (0,`) + ‖u1‖2L2(0,`)

)

for all functions of the form

uN (t, x) =
N ′∑

k=1

(
bkeiωN,kt + b−ke−iωN,kt

)
sin(µkx)

with complex coefficients b±k. Furthermore, if N ′ is kept fixed and N → ∞, then
the constants αN,N ′ and βN,N ′ can be chosen independently of N .

Proof: It follows from the expression of ωN,k that

ωN,1 < ωN,2 < · · · < ωN,N−1
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and
ωN,2 − ωN,1 > ωN,3 − ωN,2 > · · · > ωN,N−1 − ωN,N−2.

The first part of the proposition follows by applying Ingham’s theorem.
The second part follows by observing that ωN,k → ωk for each fixed k if N →∞.

¤

We may deduce from the proposition the result for the continuous case as
follows:

Theorem 2.2 If |I| > 2`, then there exist two positive constants α and β such
that

α
(
‖u0‖2H1

0 (0,`) + ‖u1‖2L2(0,`)

)
≤

∫ T

0

|ux(t, 0)|2 dt

≤ β
(
‖u0‖2H1

0 (0,`) + ‖u1‖2L2(0,`)

)
(2.5)

for all solutions of (2.1).

Proof: It suffices to establish the inequalities (2.5) for all finite sums of the form

u(t, x) =
N ′∑

k=1

(
bkeiωN,kt + b−ke−iωN,kt

)
sin(µkx)

with complex coefficients b±k: the general case then follows by density.
For u given in this form, we apply Proposition 2.1 for every N > N ′ satisfying

(2.4). We have

αN ′
(
‖u0‖2H1

0 (0,`) + ‖u1‖2L2(0,`)

)
≤

∫

I

∣∣∣u
N (t, h)

h

∣∣∣
2

dt

≤ βN ′
(
‖u0‖2H1

0 (0,`) + ‖u1‖2L2(0,`)

)

for every N > N ′. Since ωN,k → ωk for k = 1, . . . , N ′ − 1, we conclude by letting
N →∞. ¤

By applying in the proof of Proposition 2.1 above a discrete version of Ingham’s
theorem, established in [8], Theorem 1, we obtain the following result where both
the time and space variables are discretized:

Proposition 2.3 Fix two positive integers 1 < N ′ < N , set γ = ωN,N ′ −ωN,N ′−1,
choose a positive number δ satisfying

0 < δ ≤ π/γ and ωN,N ′ ≤ π

δ
+

γ

2
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and then a positive integer J satisfying Jδ > π/γ. Then all functions of the form

uN (t, x) =
N ′∑

k=1

(
bkeiωN,kt + b−ke−iωN,kt

)
sin(µkx)

satisfy the estimates

α
(
‖u0‖2H1

0 (0,`) + ‖u1‖2L2(0,`)

)
≤ δ

J∑

j=−J

∣∣∣u
N (t′ + jδ, h)

h

∣∣∣
2

≤ β
(
‖u0‖2H1

0 (0,`) + ‖u1‖2L2(0,`)

)

for every t′ ∈ R with two positive constants α and β depending only on N , N ′, γ
and Jδ.

Moreover, if N ′ is kept fixed, δ → 0 and N → ∞, then the constants α and β
can be chosen independently of δ and N .

3. Simultaneous observability of discretized strings

In this section we consider a finite number of vibrating strings with a common
endpoint. Denoting their lengths by `1, . . . , `M and using the discretization steps
hj = `j/Nj for j = 1, . . . ,M , we now have the following systems:





uj,tt − uj,xx + ajuj = 0 in R× (0, `j),
uj(t, 0) = uj(t, `j) = 0 for t ∈ R,
uj(0, x) = uj0(x), uj,t(0, x) = uj1(x) for x ∈ (0, `j),
j = 1, . . . , M

(3.1)

and 



(uNj

j,tt −∆hj u
Nj

j + aju
Nj

j )(t, khj) = 0,

u
Nj

j (t, 0) = u
Nj

j (t, `j) = 0,

u
Nj

j (0, khj) = uj0(khj),
u

Nj

j,t (0, khj) = uj1(khj)
for t ∈ R, j = 1, . . . ,M, k = 1, . . . , Nj − 1.

(3.2)

Here a1,. . . , aM are given real numbers.
In order to state our results we set

µj,k =
kπ

`m
, ωj,k =

√
µ2

j,k + aj , ωj,Nj ,k =

√(
sin µj,khj/2

hj/2

)2

+ aj

and we introduce the Hilbert spaces Ds(0, `j) for each real number s and j =
1, . . . , M , obtained by completion of C∞c (0, `j) with respect to the Euclidean norm

∥∥∥
∞∑

k=1

ck sin µj,kx
∥∥∥

s
:=

( ∞∑

k=1

k2s|ck|2
)1/2

.
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Note that we have in particular

D0(0, `j) = L2(0, `j), D1(0, `j) = H1
0 (0, `j), D2(0, `j) = H2(0, `j) ∩H1

0 (0, `j).

Using these notations, the problems (3.1) and (3.2) are well-posed for any initial
data u0m ∈ Ds(0, `m) and um1 ∈ Ds−1(0, `m), m = 1, . . . , M , s ∈ R, and the
corresponding solutions are given by the formulae

uj(t, x) =
∞∑

k=1

(
bj,keiωj,kt + bj,−ke−iωj,kt

)
sin(µj,kx), j = 1, . . . , M

and

u
Nj

j (t, x) =
Nj−1∑

k=1

(
bj,Nj ,keiωj,Nj,kt + bj,Nj ,−ke−iωj,Nj,kt

)
sin(µj,kx), j = 1, . . . ,M,

respectively, with suitable complex coefficients bj,±k and bj,Nj ,±k depending on the
initial data.

We recall from [2] and [7] the following result for the continuous case:

Theorem 3.1 For almost all choices of (`1, . . . , `M ) ∈ (0,∞)M , the solutions of
(3.1) satisfy the estimates

M∑
m=1

(
‖um0‖2s + ‖um1‖2s−1

)
≤ cs,I

∫

I

∣∣∣
M∑

m=1

um,x(t, 0)
∣∣∣
2

dt (3.3)

on every interval I of length

|I| > 2(`1 + · · ·+ `M ),

for every s < 2−M .
Moreover, if the numbers am are distinct, then the estimate (3.3) also holds in

the limiting case s = 2−M .

We are going to prove the following discretized version of this theorem:

Theorem 3.2 Fix positive integers 1 < N ′
j < Nj, j = 1, . . . , M , and choose

|I| >
M∑

j=1

2π

ωj,Nj ,N ′
j
− ωj,Nj ,N ′

j−1
.

Fix s < 2−M arbitrarily. There exist two positive constants αs such that

M∑

j=1

‖uj0‖2s + ‖uj1‖2s−1 ≤ αs

∫

I

∣∣∣
M∑

j=1

u
Nj

j (t, hj)
hj

∣∣∣
2

dt
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for all functions of the form

u
Nj

j (t, x) =
N ′

j∑
n=1

(
bj,keiωj,Nj,kt + bj,−ke−iωj,Nj,kt

)
sin(µj,kx) (3.4)

with complex coefficients bj,±k. Furthermore, if N ′
j is kept fixed and Nj → ∞ for

all j, then the constants αs can be chosen uniformly in N .
If the numbers aj are distinct, then the conclusion also holds for s = 2−M .

Proof: It follows from the expression of ωj,Nj ,k that

ωj,Nj ,1 < ωj,Nj ,2 < · · · < ωj,Nj ,N ′
j
,

ωj,Nj ,2 − ωj,Nj ,1 > ωj,Nj ,3 − ωj,Nj ,2 > · · · > ωj,Nj ,N ′
j
− ωj,Nj ,N ′

j−1

and

ωj,Nj ,k → ωj,k for each fixed k if Nj →∞, j = 1, . . . ,M.

Therefore the theorem follows by repeating the proof of Theorem 3.1 as given in
[2] and [7]. ¤

In the case M = 2 we also have a doubly discretized version of the above results.
Fix positive integers 1 < N ′

1 < N1, 1 < N ′
2 < N2 and set

γ := min
{
ω1,N1,N ′

1
− ω1,N1,N ′

1−1, ω2,N2,N ′
2
− ω2,N2,N ′

2−1

}
.

Furthermore, given 0 < δ ≤ π
γ arbitrarily, fix an integer satisfying

Jδ >
π

ω1,N1,N ′
1
− ω1,N1,N ′

1−1
+

π

ω2,N2,N ′
2
− ω2,N2,N ′

2−1
.

Theorem 3.3 For almost every choice of (`1, `2), all solutions of (3.2) of the form
(3.4) satisfy the estimates

2∑

j=1

‖uj0‖2s + ‖uj1‖2s−1 ≤ αs

J∑

j=−J

∣∣∣u
N1
1 (jδ, h1)

h1
+

uN2
2 (jδ, h2)

h2

∣∣∣
2

for every negative real number s.
If the numbers aj are distinct, then the conclusion also holds for s = 0.

Proof: The analogous result without space discretization eas established in [9].
The proof is easily adapted by considering functions of the form (3.4). ¤
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4. Simultaneous observability of discretized beams

We consider in this section the following system:





uj,tt + uj,xxxx = 0 in R× (0, `j),
uj(t, 0) = uj(t, `j) = 0 for t ∈ R,

uj,xx(t, 0) = uj,xx(t, `j) = 0 for t ∈ R,

uj(0, x) = uj0(x) and uj,t(0, x) = uj1(x) for x ∈ (0, `j),
j = 1, . . . , M.

(4.1)

Using the notations of the preceding section this problem is well-posed for any
initial data u0m ∈ Ds(0, `m) and um1 ∈ Ds−2(0, `m), m = 1, . . . ,M , s ∈ R, and
the corresponding solutions are given by the formulae

uj(t, x) =
∞∑

k=1

(
bj,keiω2

j,kt + bj,−ke−iω2
j,kt

)
sin(µj,kx), j = 1, . . . , M

and

u
Nj

j (t, x) =
Nj−1∑

k=1

(
bj,Nj ,ke

iω2
j,Nj,kt + bj,Nj ,−ke

−iω2
j,Nj,kt

)
sin(µj,kx), j = 1, . . . , M

respectively, with suitable complex coefficients bj,±k and bj,Nj ,±k depending on the
initial data.

We recall from [2] and [7] the following result for the continuous case:

Theorem 4.1 For almost all choices of (`1, . . . , `N ) ∈ (0,∞)M , the solutions of
(4.1) satisfy the estimates

M∑

j=1

(
‖uj0‖2s + ‖uj1‖2s−2

)
≤ βs

∫

I

∣∣∣
M∑

j=1

uj,x(t, 0)
∣∣∣
2

dt

on every nondegenerated bounded interval I and for every s < 1.

Now we consider the following discretization of (4.1):




(uNj

j,tt + ∆2
hj

u
Nj

j )(t, khj) = 0,

u
Nj

j (t, 0) = u
Nj

j (t, `j) = 0,

u
Nj

j,xx(t, 0) = u
Nj

j,xx(t, `j) = 0,

u
Nj

j (0, khj) = uj0(khj),
u

Nj

j,t (0, khj) = uj1(khj),
for t ∈ R, j = 1, . . . ,M, k = 1, . . . , Nj − 1.

(4.2)

Modifying the proof of Theorem 4.1 in [7] to the discretized case as we did in
the preceding section, we obtain the following result:
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Theorem 4.2 Fix positive integers 1 < N ′
j < Nj, j = 1, . . . ,M . For almost all

choices of (`1, . . . , `N ) ∈ (0,∞)M , the solutions of (4.2) of the form

u
Nj

j (t, x) =
N ′

j∑
n=1

(
bj,ke

iω2
j,Nj,kt + bj,−ke

−iω2
j,Nj,kt

)
sin(µj,kx) (4.3)

(with complex coefficients bj,±k) satisfy the estimates

M∑

j=1

(
‖uj0‖2s + ‖uj1‖2s−2

)
≤ βs

∫

I

∣∣∣
M∑

j=1

u
Nj

j (t, hj)
hj

∣∣∣
2

dt

on every nondegenerated bounded interval I and for every s < 1.
Furthermore, if N ′

j is kept fixed and Nj → ∞ for all j, then the constants βs

can be chosen independently of N .

Theorem 4.1 may be deduced from Theorem 4.2 in the same way as Theorem
3.1 was deduced from Theorem 3.2 in the preceding section.

In the case M = 2 we also have a doubly discretized version of the above results.
Fix positive integers 1 < N ′

1 < N1, 1 < N ′
2 < N2 and set

γ′ := min
{

ω2
1,N1,N ′

1
− ω2

1,N1,N ′
1−1, ω

2
2,N2,N ′

2
− ω2

2,N2,N ′
2−1

}
.

Furthermore, given 0 < δ ≤ π
γ′ arbitrarily, fix an integer J satisfying

Jδ >
π

ω2
1,N1,N ′

1
− ω2

1,N1,N ′
1−1

+
π

ω2
2,N2,N ′

2
− ω2

2,N2,N ′
2−1

.

Theorem 4.3 For almost every choice of (`1, `2), all solutions of (4.2) of the form
(4.3) satisfy the estimates

2∑

j=1

‖uj0‖2s + ‖uj1‖2s−1 ≤ αs

J∑

j=−J

∣∣∣u
N1
1 (jδ, h1)

h1
+

uN2
2 (jδ, h2)

h2

∣∣∣
2

for every negative real number s.

Proof: The analogous result without space discretization eas established in [9].
The proof is easily adapted by considering functions of the form (3.4). ¤
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